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Decoupling of Multivariable Systems and Application to
Flight Control System
Tain-Sou Tsay

Department of Aeronautical Engineering, National Formosa University

Abstract

In this literature, an effective decoupling method is proposed for analyses and designs of multivariable
systems. It is applied to a serious aerodynamic coupled missile flight control system. No matrix inversion of the
system dynamic for decoupling control is required. From frequency and time responses of the illustrating
multivariable example, it will be seen that the decoupling and robustness for aerodynamic couplings can be
obtained simultaneously. The decoupling effects are kept almost unchanged for large system parameter variations
and uncertainties.
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l. Introduction

The flight control systems are widely used real
multivariable feedback control systems. They are large
parameter variation systems for large flight envelope and
serous cross-coupling systems for aerodynamic
couplings. For skid-to-turn(STT) missile flight control
systems, aerodynamic couplings from pitching/ yawing
channels to rolling channel are destabilizing and degrade
performance of the system [1,2]. Higher gain crossover
frequency ratios of the rolling channel to pitching/
yawing channels are usually expected. They are usually
used in conventional design techniques [3,4], and are
diagonal dominant designs for multivariable feedback
systems [5,6]. However, it is constrained by hardware
dynamics and system requirements for target engaging.
Other possible methods are to use cross-decoupling
controllers [7-9] and output feedback- decoupling
controllers [10,11]. In general, inverting the transfer
function matrix of multivariable plant suffers from it
may have large modeled, un-modeled uncertainties,
non-minimum phase zeros and large faster variations
of cross-coupling dynamics.

Dynamic Inversion(DI) is another possible
methodology for designing multivariable control laws
[12-18]. A DI controller consists of two parts. In inner
loop, nonlinear input-output behavior of the plant is
canceled by feedback control laws, consisting of inverse
nonlinear model equations. The closed-loop system is
reduced to a set of integrators. In outer loop, a linear
controller is used to impose desired command response
behavior. Unfortunately, dynamic inversion control laws
may show very poor robustness to uncertainties in the
designing model. This problem is usually coped with by
introducing robustness design techniques: H_ / u
synthesis [16], Quantitative Feedback Theory (QFT) [16,
17], Structured Singular Value Synthesis (SSV) [18], etc.
to find robust controllers for recovering the required
robustness under model uncertainties.

In this literature, a nonlinear decoupling method is
proposed for multivariable feedback control systems.
Decoupling is derived from multiplications of
measurable output feedback datum and controllable
outputs of conventional diagonal controllers. No matrix
inversion for plant dynamic is need in analysis and
designs. The decoupling behaviors are nonlinear, and
will be linearized by small perturbation theorem. It is
similar to find the linearized model of the plant. Exact
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decoupling and diagonal dominant conditions are
formulated.

The proposed method is applied to a supersonic-
missile flight control system. It is a 3x 3 multivariable
feedback control system with lager parameter variations.
Multiplications of two measurable accelerations with
three controllable outputs of conventional well-proven
autopilot are used to cope with aerodynamic couplings.
They offer exact sign and magnitude proportional to
aerodynamic coupling. Over or wrong cancellation can
be prevented. It needs not to concern the internal
stability [7-9]. The magnitudes of decoupling terms will
be found by eliminating major coupling elements of the
state transition matrix of a simplified coupled system
only. The validation of simplification is verified by the
completed system including hardware dynamics and
compensations. From frequency responses of uncoupled,
coupled and decoupled systems, it will be seen that the
decoupling and robustness coped with aerodynamic
couplings can be obtained simultaneously. All analyzed
results will be verified by 5-DOF digital simulations
under large parameter variations and uncertainties.

I1. The Proposed Decoupling Method
Considering a general m xm multivariable
system described below:

X = f(X.Uga ) (1)
Y(mxl) = g(X’ U(mxl) ' t)
If diagonal controllers 2.(8), D, (), p,, (5) Were used,

then inputs of multivariable system are
Unay = diaglpy(s), P2 (8)res P (NRiy = Yr) @)

where R . are input commands. Eq. (2) represents

(mx1)
conventional  designs  without cross-coupling
controllers. For illustrating the proposed decoupling
method, 3x3 multivariable systems will be
discussed and applied to a 3x 3 flight control system.
The three inputs (v, u,,u,) given in Eq. (2) are
replaced by (v;,u;,u;) and given below:

U, =U, + K,,U,Y, + K,U.Y,
U, =U, + KUY, +K,U.Y,
Ué = U3 + K12U1Y2 + K21U2Y1

(3)

The added terms to original (v,,u, u,) are

decoupling terms. For instance, K,U,y, and
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KUY, are decoupling control for coping with
coupling from channels 2 and 3 to channel 1. The
command y; includes feed-forward (vu,,u,) and
feedback (Y,,Y,) decoupling behaviors. g are

i

parameters to be found. Eq. (3) gives that (v,,7,,Y,)

are three measurable output feedback datum and
(vy,u,u;) are three controllable datum. Certainly,
one can use U,Y,,U,Y,, and U,Y, in Eq. (3) for
decoupling. But, it will be seen that Eqg. (3) is the
good decoupling formulation for flight control
systems.

The nth-order small signal perturbation model
from a specified set of trim conditions 7 and v

(32) (3)

of Eq. (1) for 3x 3 multivariable systems are

Xty = Ay X oy + B(nxS)u('le)

(nxn)

(4)

’
Yaa) = Caay X may T Dtz

for w/=U'+u;i=123) and (v, = Y +y,;i=123)- The
small perturbed models of Eq. (3) derived from trim
conditions (77,,7,,7,), (T,,0;,0;) and (Y,,Y,,Y,) are

ul =1y + Kyy (Uyys + Ya“z) + Ky (Usy, + Yyty)
“2 =1, + KUy + ?3“1) + Ky (Usy, + ?1“3)
Uy =ty + Ky, (Uyy, + Vo) + Koy (U, + Yﬂ/’z)
®)

for (U, =U, +u,;i =1,2,3) . For simplicity, constant
diagonal gains diag{p,, p,, p,} are used. Input
commands [R,, R,, R, | are set to be zeros for general

N
Y2
V3

(6)
Replacing [u/,u},4,]" of Eq. (4) by Eqg. (), one has

use. Then, Eq. (5) can be rewritten as

u
u, |=
Uy

= F;M)Y(an

2
- Kla{apl + Kiil(i:i
- KpYop + KU,

- K23?3172 + Kszljs - K32§173 + Kzagz
- P> - K Yips + KUy
- KyuYip, + KUy ~Ps

. -1 -~
X(m) = [A(m) + B(nxs)F(sxs) ( _D(sxa)F(axs)) ]X(nxl) = A(nxn)X(nxl)
-1
Yea) = (]_D(sxa)F(M)) C(3><n)X(n><1)

™)

The term B _F

3yt (3a

)(]_D(s,xa)F(s,xa))i1 in Eq (7) is

the decoupling matrix. It includes designing
parameters g . . For strict proper system,
decoupling matrix becomes B Faa - If state
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variables are decomposed into three sets; i.e.,
X =l 1, X, and those are relate to three channels

respectively, then Matrix Zm can be decomposed
into nine sub-matrices; i.e.,

;hu
,:)hu

iy
=

(®)

N
NN

N
=

(nxn)

RN

19
)

RN

o
g
1%
@

where 4, . are coupling matrices between

channels. Exact decoupling can be obtained by nulling
elements of coupling matrices. Eq. (3) gives there are
only six parameters can be used. Thus, exact decoupling
is impossible for system order » >3. The number of
parameters K, is m*-m for mxm multivariable

systems and maximal total number of 4 is n’—n.

In general, the value of n?—nis greater than that
of m? —m . It will be seen that eliminating/ reducing the
major coupling elements in 4, to get diagonal
dominant is rather than exact decoupling. Diagonal
dominant can be obtained by minimizing off-diagonal
norm/ diagonal norm ratios:

Aij
Aii

3 3 ‘

min{ > ;

©)

Kijiej

Minimal-order model of the system will be used in
the following section to find &, first, and then
hardware dynamic and compensations included for
confirming effectives of decoupling characteristics
of the complete system. Since PI controller can be
used to decouple in low frequency band, thus the
major effort will be paid to consider characteristics
in medium frequency band. The detailed analyzed
procedures and effectives will be illustrated by a
3x3 supersonic-missile flight control system. The
minimal system order » to describe the flight
control system is equal to 5.

I1l. Application to Flight Control

Systems

The translational and rotational dynamics of the
missile shown in Fig.1 are described by the following
six nonlinear differential equations [19]:

(./=—q*§Cx/m—WQ+VR+FYg/m (10)
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V =-gsC,/m-UR+WP+F, Im (11)
W =—gsCm-VP+UQ+F,Im (12)
P=-Cgsli1, (13)
0=C,gsl-(I, - 1)PRI1, (14)
R=C,gsl-(I,-1)PQII, (15)

In above equations, U, V and W are velocity
components measured on the missile body axes; P, O

and R are the components of the body angular rate:
F,F,,F, arethe gravitational forces acting along the

xg' " yg?

body axes: and 7,/ 1, are the moments of inertia.

The variable 5 is the reference area, g is the dynamic
pressure:

G=pU*+Vi+W?) 2= pVEi2 (16)

[ is the reference length. The aerodynamic lifting
forces ( C,,C,,C,) and moments ( C,C,,C, ) are

function of Mach number, angle of attack («"), angle
of sideslip (8"); the angles of attack and sideslip are

defined as

o =tan (W IU) (7
and

B =tan[sin (¥ /V,,)/cosa’] (18)

The small signal perturbation model from a specified
set of trim conditions (P*,Q*,R*, 4,,, 4y, ", B*) IS

described by following differential equations:

p=L,p+La+L,B+Lyop+Lydq+Lyor (19)
q=M,qg+M,a+M;5+Mdp (20)
(;e:—tanﬁ*p+q+MB(Zaa+Zaq5q+Z@5p) (21)
r=N,r+N,B+N;& +Nyp (22)
,b:tana*p—r+MB(Yﬁﬂ+Y§,§r+Y§p5p) 23)
Apee =Zya+Zy0q+Zs0p—13(M,q+ M, a+Mydp+ M)
(24
Appee =Y B+ Y50 + Yoo+ (N 7+ N, B+ Ny p+ Ny or)
(25)

where p, ¢, r are body angular rate deviations from
trims (P",Q",R"); a a . . are body acceleration

yacc
deviations from trims (4,,,4,,); and « and g are

zacc !
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angles of attack and sideslip deviations from
trims (¢, %), I is the distance between sensor
position and Central of Gravity (CG). L.,,M N,
Y, and Z, are of moments
(c,,c,,c, )l forces (c ,C ) with respect to p, g,

r,a, B, dp,oq,0r. Fig. 2 shows connections given by

derivatives

Egs. (19) to (25), in which gray blocks show coupling
effects between rolling/ yawing/ pitching channels.
For large angle of attack («") and small sideslip angle
(p”), the magnitude of terms tan " and L, will

much less than those of tanea” and L,, thus the

original 3x3 system can be decomposed into a 2x2
roll-yaw coupled system and a pitching system.
Similar to the case of large value of g* and small
value of «", it can be decomposed into a 2x2
roll-pitch coupled system and a yawing system.

Now, consider the major coupling effects from
yawing channel to rolling channel of a 2x2 roll-yaw
coupled system. The transfer function of p / or is

r_ Lys” +[L,MY; — L, (N, + M, Y,)ls — Ly(N; +Y;M,N))

§ =L, +N.+MY))s* +(LN. + N, + LMY, + NM,Y, —tana’Ly)s
+ Ly (N, + N.M,Yy)

—L (N, +NM,Y,)+ N, tana’ L,

(26)
The denominator of Eq. (26) can be approximated by

A, (s) =s° -(L,+N, +M3Y/,)s2 +(N, 7a*Lﬁ)s7LpNﬂ +N,‘a*L/,
(27)
for

tana za’;
INy—a'Ly [>>|L,N, +L,MY,|;
|-L,N,+N,a'L, >>|L,N,M,Y, |

Since the value of N, is negative for stable static
margin(SM) of the missile, the positive value of a*Lﬁ
is called the unstable aerodynamic coupling for it will

destabilize or degrade performance of the system;
while negative value of «'L, is called the stable

aerodynamic coupling. Note that the magnitude of L,

given in the numerator of Eq. (26) is much greater than
that of L, . Such that L, and &L, are two major

coupling terms. They affect not only the magnitude but
also the stability of the system.
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Considering another simplified 2x2 roll-pitch coupled
system, the transfer function of p/dq is in the form of

L&,sz +[La]WBZ&/ 7qu(A/[q M2 )b +L, (Ma’ 7Z‘YZMBA/[")

P _
& (L, +M,+M,Z,)s +(L,M, ~M, +LM,Z,+M MBZ—tanf L )s

+L, (M, +MM,Z,)
~L,(-M,+MM,Z,)~M, tanfi L,

(28)
Similar to discussions for the 2x2 roll-yaw coupled
system, one can find the approximated denominator of
Eq. (28) is
A

rq

(5)=s*—(L, + M +M,Z,)s* +(-M, + fL,)s
+L,M,-M L,

(29)

Eq. (29) gives the positive value of S°L, is called the

stable aerodynamic coupling; and negative value of
B'L, is called the unstable aerodynamic coupling.

B°L, and L, are two major coupling terms from

pitching channel to rolling channel. Egs. (26) and (28)
give that the characteristic of the considered system is
largely affected by B°L, and 'L, . These imply that
uses of U,Y, and U,)Y, in Eq. (3) are rather than
those of U,Y, , and U,Y, for decoupling flight

control systems.

There are five measurable datum
( 4 AZFlp/,Q/,R/) and three controllable output

YF

commands (AP,A(,,AV) of autopilot can be used for

decoupling. Fig.3 excluding decoupling blocks is the
well-proven control configuration of conventional
missile autopilot [3, 4]. Consider the nonlinear
decoupling configuration shown in Fig.3. The
mathematical representation of the decoupling block is

N, =A, + KAy xA, + KAy xA, (30)
A, = A, + KAy <A, (31)
A=A, + KAy, xA, (32)

where A, terms are output commands of autopilot
without decoupling, A' « terms are output commands

with decoupling, and X, ,K,,, K, and K,, are gains of

237
decoupling loop to be found and applied. Since the
maneuvers of pitching and yawing channels are
orthogonal. There is almost no coupling between
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pitching and yawing channels. Thus, Egs. (31) and (32)
neglect 4, x A, and Ay XA, -

The small signal perturbed equations of Egs. (30)
to (32) on trim conditions ( 4, , 4, , 5qo, 6ro0 ) are

&=+ Koy (4,0 +a,, 50) + Koy (4,8 +a,,.80) (33)
&1‘ = &I + KlsAméU (34)
o' =0r+ Ky, 4,,0p (35)

with
A, =Po+PiA, =0+ A, =0+ Ay = Ayy +a .
and dpo=0 for skid to turn missile.

zace

Signal flows with Eqgs.(33) to (35) are given in
Fig.4. Note that ( op,8q,0r ) will replace

( pc,0qc,00c ) in following analyses, those are

A, =A4,,+a

outputs of de-mixer of four actuators cascaded to
(8,, 9,.,9,.,0, ) shown in Fig.3. Fig.4 shows the

linearized control configuration for analyses and
designs. Eq. (33) includes A4,,6r and 4,,0q . It implies
that proper values of K,, and K,, may decouple the
coupling terms oL, and BL,. The uses of Egs. (34)
and (35) with proper values of K, and K,, are used to

decouple the kinematical coupling. For simplicity,
hardware dynamics and compensations are first neglected
to derive close-form solutions of X, , K,,, K,, and K, .

32 23

Since gain crossover frequencies of inner loops in
conventional designs are usually greater than those of
outer loops, outer loops shown in Fig.4 can be
neglected for decoupling analyses and designs. This
simplification will be verified by frequency and time
responses of the complete system. The inputs of the
plant of inner loops closed system can be written as
below:

P'= -K,p+Ky (4,00 +a,,, 00) + K3 (Ayo 0 + ayaauaqo) (3 6)
of'=K; g+ K34y, (37)
o'=K,r+K,4,,0p (38)

Substituting terms (a
and (25), one has

e @) of Eqg. (36) with Eqgs. (24)

P
§pl ell elZ 613 614 815 q ﬁl f12 ]rl3 5p
5q¢'|=|0e,0 00 |a|+|f, 00 || (39
S 00 0e,0]|r fy 0 0 | or

B
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where e, =-K,;
e, =—K,0r0l M e, =+K,o0(Z,~IM,);

e, =+K,,0q0l N,

e, =+K,0q0(Y, +I;N,); e, =K, je, =K,

Ju=K,600Z, +K,8q0Y,, 5 f, =K, 00(Z, —I.M )+ K, A4, ;
So=KyA,, +K,0q0(Y, +IN,) s [ =KuAyys fu=Kud,

The simplified system will be closed after (g, 8", 5) are
replace by (&p, g, o) . It implies

p
P 1 1 S Jis €11€1€13€14 615 | 4
oq :? Saul=fu—fisfa JiaSu 0e,, 000 |a
o g Sa Jofu 1-fu—f2fu] 00 0ey O r
B
(40)

where

A =1-k26,0Z-K5640Ys,—KzAro [K«2(Zsq—1sMs,)
+K 23Azo]—K12Azo [K 2 Az0+K 2 (Y srtls N&:-)]

(41)
Substituting Eg. (40) into Egs. (19) to (23), one has
-P- -au B O | By & 1 -F-
q @y iy dp | Ey dy (| 4 1
@|=o oy oy ay)a “
¥ By iy Oy Ty dy r
B |4y 4y a4 a, da; | f

Eq. (42) is the state transition matrix of the closed-loop
system. Considering following five elements of above
state-transition matrix for decoupling:

ay =L, =K, [Ly + KLy Ayo + KL Ayp 1 A (43)
ay =L, +Kyo0(Z, _ZSMLI)[LJp + K13L&;Ay0 + KLy Al A,

44
tys = Ly + Kpu3q0(¥, + [iN )L, + KyyLy, Ay + KIZL&AZU]/A(F :

(45)
ay = K, [-My, + KoMy Aol A, (46)
ty = K [-Ny + KyNy A 1A, (47)

where a, is the state transition from « to p and a4
is the state transition from S to p . Conventional design

48
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concepts are to minimize ratios of |a,/a,| and
|a, /a, | for diagonal dominant. It implies that larger

value of K i and large gain crossover frequency of inner

loop will be. Eqgs. (44) and (45) represent that one can set
a,; and a5 to be zeros (or approaching to zeros) with

proper values of K, ,K,,, K, and K,,. It minimizes

ratios of |a,/a, | and |a,/a, | while leaving K be

alone. After a;; and a,; are set to be zeros,
aerodynamic couplings ( L, and L,) form pitching/

yawing channels to rolling channel can be eliminated. In
another way, let a,, and a, to be zeros, then

kinematical coupling from p to ¢/ or to 7 will be

eliminated also. Then, the cycling of coupling between
rolling and pitching/ yawing channels are disconnected.
Note that the eliminations are not exact for the real system.
However, small ratios of |a,,/a,| and |a,/a, | are
usually obtained for diagonal dominant. It is due to the Eq.
(42) is derived on some simplifications and assumptions,
and due to modeling uncertainties for aerodynamics are
always exist.

The four decoupling loop gains X, , K,,, K,, and

32 231

K, are found by setting four elements a,,, a,5, d,,

and ag, to be zeros. They are in the form of

K. =— LaAF
* oro(Z, - ZSMa)[Lop + K13L&;AYO + Ky, L5 Az]
(48)
K- LA,
® 0qo(Yy + 1IN j)[ Ly, + KigLs Ay + Ky Ly Ay
(49)
M 50
Kyp=—2 (50)
M, 4y
Ny, 51
Ky =—1 (51)
Ny Az

where A, is given in Eq. (41). Egs. (48) to (51)
give K, ,K,,, K,, and K, are independent on inner
loop gains K, K, and K, . They are functions of trim
conditions ( 4,,,4,,,690,6r0 ). By experience, the

modeling  uncertainties  for  aerodynamic
coefficients are magnitudes of them rather than
wrong signs of them. Wrong decoupling gains in
sign can be avoided. This is the major advantage
of the proposed method rather than dynamic
inversions for matrix inversion of an

incompletely known design model may introduce



ot R e AR )
6

wrong way cancellation. Another advantage is
magnitudes of decoupling are adjusted

automatically on those of (4,,, 4, ). It will be seen

ZF !
that gains found for large aerodynamic coupling
condition can be used for small aerodynamic coupling
conditions.

V. A Supersonic Missile Example
The small perturbed aerodynamic coefficients of the
considered system are given in Appendix A [20, 21]
for seven combinations of angle of attacks (&)
and sideslip (S7). It gives that performance and

robustness of the considered system will be
affected by L, for maximal value of coupling

coefficient L, isabout two third of L, . In general,

three SISO systems are designed first individually;
ie.,

r_ Ly (52)
o s-L,
for rolling channel;
q _ Mys-MM,Z, +Z,M,Z,
& stH+(-M,-MyZ,)s+(-M,+M M,Z,)
(53)
Dy _ Zys'—ZyM s+(MyZ,-Z;M,) (54)
&  SPH(M,-MyZ)s+(-M,+MM,Z,)
for pitching channel;
r_ Nss—NyMpY, + NyMyN, (55)
& s°+ (=N, =M,Y,)s+(N,+N.MY,)
e YaS? —YuN,)s+(=NyY, +Y,N,) (56)

O 2+ (=N, —MyY,)s+(N,+N.M,Y,)

for yawing channel and then connected them with
aerodynamic / kinematical coupling terms ; i.e.,
MIMO system, for verification the suitability of
SISO designs. Several iterations are usually
needed. Table 1 gives SISO designed and MIMO
analyzed results. The gains (K, , K, K, W, , K, ,
K, W _,K, ) are give in Appendix A. There are
gain adjusting logics for rolling channel gains K,
and K :

Sckip=0.025| 4,, | +1.4, K, = Sckipx K+
Sckop = 0.050| 4,, | +1.4,K, = Sckopx K,

op opo

J:{ 3’%}
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The use of Sckip and Sckop is to increase
low frequency gain for coping with aerodynamic
couplings. They are functions of A4,,. The use of
Sckip will increase the gain crossover frequency
for large value of A4, . The use of Sckop will

increase Low Frequency Gain Margins(LFGMs)
while losing Phase Margin(PM) and keeping gain
crossover frequency(WCR) almost be unchanged.

The compensators and hardware dynamics are
given in Appendix B on s-domain. Digital
compensators are derived from bilinear
transformation: s =2(z-1)/7,(z+1). From Table 1,
one can see that it is a good design for good
robustness found for SISO System; but LFGMs are
reduced incrementally for larger coupling term
added; i.e., MIMO system. The effects of coupling
terms for (a", g7) = (12°, 1°) are shown in Fig.5.
Fig.5 shows open-loop frequency responses of the
rolling channel. The broken point is at the position
between dpc and actuator. The solid- lines are
frequency responses of the rolling SISO system,
and the doted-lines are those of 3x3 MIMO system
while being broken the rolling inner loop only.
Fig.5 shows that loop gain in low-medium
frequencies is largely reduced by introducing
coupling terms. Egs. (26) and (28) give same
conclusion. The corresponding LFGMs, High
frequency Gain Margins (HFGMs ) and PMs are all
given in Table 1. It gives that LFGMs are
unacceptable for «” > 6°. Furthermore, the system is
nearly unstable for " =12 °. Table 1 gives decoupling
for better LFGMs is expected.

Table 2 gives the analyzed results with decoupling
added. X, ,K,,,K,, and K, are found by Egs. (48) to
(51). It gives LFGMs become acceptable (LFGM =
0.53), while keeping PMs and HFGMs almost be
unchanged. The effective of decoupling is shown in Fig.5
(dashed-line) also. It recovers the magnitude from
coupled system (doted-line) to increase LFGMs. Note

that the effective for decoupling of two-axis maneuvering
(a”, p7)=(10° 8°) are given in Tables 1 and 2 also. Note

also that K,, , K,, , K, and K, are found from
simplified system without compensations and hardware
dynamics. The effects of compensations and hardware
dynamics must be analyzed.
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Fig.6 shows the wvariation analyses for four
combination conditions with/ without decoupling and
with/without compensations and hardware dynamics.
The doted-line shows the responses without decoupling/
without compensations and hardware dynamics. The
dash-doted-line shows responses with
decoupling/without  compensations and hardware
dynamics. The solid-line shows responses without
decoupling/ with compensations and hardware dynamics.
The dashed-line shows responses with decoupling/with
compensations and hardware dynamics. Fig.6 shows that
the decoupling characteristics are almost not affected by
adding hardware dynamics and compensations.
Hardware dynamics and compensations can be viewed as
un-modeled dynamics. It implies that the proposed
decoupling is robust for coping with un-modeled
dynamics.

Table 3 gives the analyzed results with constant
decoupling gains found for (", p”) = (12°, 1°). Other
six trim conditions use same gains. It gives compatible
results given in Table 2. For instance, HFGM and PM of
the trim condition (a", g*) = (1°, 1°) corresponding to
(4
(30) gives same conclusion for amplitudes of decoupling
are adjusted by ( 4,, , 4,, ) automatically. The decoupling
described by \ Ky A,,0r0 + K,y Am&]o\ for each trim

ZF !

condition is given in Table 3. Over decoupling is avoided.
The gain crossover frequency (WCR) of the rolling
channel of each trim condition is given in Table 3 also.
They are almost constant. The analyzed results gives in
Table 3 show that decoupling are robust under large plant

variations; i.e.; angle of attack ( «" ) varied from 12° to. 1°.

Appendix A gives variations of aerodynamic coefficients
for seven trim conditions. Thus, constant gains
K K K, and K, derived from serious
aerodynamic coupling conditions can be used for all other
trim conditions. All analyzed results are verified by
5-DOF simulations in following paragraphs.

32 23 1

Fig.7 shows the 5-DOF simulating results for
(4., 4,.) = (-22.3G, -1.42G) in absence of decoupling
loops. The control configuration shown by Fig.3
excluding the proposed decoupling block is used in
5-DOF simulation. Output limitations for (dpc,dqc,drc)
are (+5°,+20°,+20°). This operating condition is
corresponding to trim condition (&", g7) = (12°, 1°).
Fig.7 shows the compensated system is nearly unstable
for sustaining oscillating of A,.,P., R, and . The

A, ) = (-1.42G,-1.42G) keep almost unchanged. Eq.

(Mo ZE A 2 F])
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oscillating frequency is 2.75Hz. Fig.6 gives same
conclusion in frequency domain.

Fig.8 shows simulating results with decoupling
described by Eqgs. (30) to (32). It can be seen that the
performance and stability of the system are improved
significantly. The maximal value of rolling angular rate is
equal to -15.6 deg/s. Note that constant decoupling gains
given in Table 2 for (a", p7) = (12°, 1°) are used in
whole simulation. £ 5G varying testing for command
A,. are applied after 2 seconds. It is corresponding to
angle of attack (") varying from 10° to 14°. These
testing give decoupled behavior keeps almost unchanged
for plant variations (emulating system uncertainties).
Fig.9 shows simulation results for (a", ") = (1°, 1°)
with decoupling gains found for (", g*) = (12°, 1°). It
can be seen that over decoupling is avoided for small

values of (4,,., 4,,. ) are used in decoupling loops.

V. Conclusions

In this literature, a nonlinear decoupling technique
has been proposed to analyses and designs of
multivariable feedback control systems. It was applied
to a real 3x3 supersonic missile flight control system.
No dynamic inversion is needed in analyses and designs.
The close-form solutions of decoupling gains were found
easily by a simplified system and verified by the
complete system including hardware dynamics and
compensations. The decoupling effects were kept
almost unchanged for large system parameter variations
and uncertainties. From 5-DOF simulation results, one
can see that the proposed method gave a possible way to
cope with aerodynamic coupling for high performance
missile.
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1, =730.45 1,=14609.0 1, =730.45 L,=-4.798 M,=-3.232
N, =-3.232 N,=219.22 N, =-599.7 N, =-29.99 z,=-30.61

Y, =-95.85 M, =-599.7 M, =-29.99 Y, =30.611 Y, = 0.000
K, =15.58 K,,=0.0031 K, =0.0744 W, =15.98 K, =0.0409
I, =0.035 M ,=0.0145 K, =0.0744 W, =15.98 K, =0.0409

Al| & =12.00° B =1.00° L,=684.45 L,=89516 Z,=-176.65
Ma =-591.6 oo :0.4.6° 56]0 :'11.330 Ayo =-1.42G AZO =-22.3G

A2.| « =10.00" B =1.00" L,=809.8 L,=7324.1 Z, =-171.4
M, =-571.3 50 =0.46" 50 =-8.86 A, =-1.42G 4,,=-17.53

A3| o =8.00° £ =1.00 L,=623.76 L,=57187.7 Z,=-161.45
M, =-508.7 5 =0.46" &0 =-6.17 A, =-1.42G 4,,=-13.1G

A4| o =6.00° B =1.00" L,=518.8 L,=44468 Z,=-136.9
M,=-392.8 50=0.46" &0 =-3.83 A,,=-1.42G 4,,=-9.11G

A5.| & =4.00" B =1.00" L,=606.29 L,=28358 Z, =-109.16
M, =-252.4 570=0.46" &0 =-2.12" 4,=-1.42G A,,=-5.77G

A6.| « =2.00° B =1.00° L,=1510.1 L,=5288 Z,=-97.29
M, =-228.8 50=0.46" &0 =-2.13 A,,=-1.42G 4,,=-2.88G

A7| & =1.00 B =1.00° L,=2789.6 L,=-2790 Z,=-95.85
M, =-219.2 570 =0.46" 50 =-0.46" 4,=-1.42G A,,=-1.42G

i . 18.84+1 W,
Appendix B: Compensators and_ QOC(S)ZK”"i;lg geil'QSC‘S): a
Hardware Dynamic /157 21
Models oI =Ky oz +1

3. Actuator models
166627
5% +142.9.55 + 166627

1. Rolling outer/inner loop compensators
5/8.79+1 PIC(s) = K, s1282.6+1
s144+1 7 s11413+1

POC(s)=K,, CAS(s) =

4. Rate gyro/accelerometer models
193444

2. Yawing/Pitching outer/inner loop compensators

5/18.84+1 W, RG(s) =
ROC(s) =K, ~————="RSC(s) =
() =K, gy RC() == 5%+ 263.95 + 193444
RIC(S):KI_"S/157+1 _
51942 +1 5. Inner loop low-pass filter body angular rate
LPFI(s) = 4396
s +439.6
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6. Outer loop low-pass filter for acceleration LPFO(s) = 251.2
s+251.2
Table 1 SISO System and MIMO System without Decoupling
Trims SISO System MIMO without Decoupling
alp HFGM PM LFGM HFGM PM
12°/1° 1.84 55.4° 0.99 1.89 0.9°
10°/1° 1.96 57.5° 0.79 1.99 59.2°
8°/1° 2.09 59.4° 0.60 211 60.6°
6°/1° 2.22 61.2° 0.42 2.23 62.0°
4°/1° 2.34 62.7° 0.25 2.34 63.1°
2°/1° 2.46 64.0° — 2.45 64.1°
1°/1° 2.52 64.7° — 2.51 64.7°
10°/8° 1.96 57.5° 0.17 1.96 58.0°
Table 2 MIMO System with Decoupling Loops and Found Gains.
Tri Robustness Decoupling Gains
ms
al LFGM HFGM PM K, Ka K, Ky
5
12°/1 0.54 1.95 38.4° 0.0366 -0.0341 0.0351 0.0022
10°/1 0.46 2.05 45.3° 0.0447 -0.0357 0.0351 0.0029
8°/1° 0.39 2.15 51.9° 0.0369 -0.0411 0.0351 0.0038
6°/1° 0.32 2.25 56.7° 0.0360 -0.0514 0.0351 0.0055
4°/1° 0.21 2.36 60.8° 0.0523 -0.0590 0.0351 0.0087
2°/1° — 2.49 64.4° 0.1431 0.0245 0.0351 0.0176
1°/1° — 2.57 65.7° 0.2630 0.2630 0.0351 0.0351
10°/8 0.13 1.98 57.5° 0.0303 -0.0176 0.0039 0.0029
Table 3 MIMO System with Constant Decoupling Gains.
Trims Robustness Gain- Decoupling
alp LFGM HFGM PM Crossover K., 4,00 + K., 4, 80]
12°/1° 0.54 1.95 38.4° 10.5Hz 1613x10°G - rad
10°/1° 0.47 2.05 46.2° 10.8Hz 1.264x10°G - rad
8°/1° 0.40 2.15 53.1° 11.0Hz 9.063x10°G - rad
6°/1° 0.33 2.26 58.2° 11.1Hz 5.913x10°G - rad
4°/1° 0.22 2.36 61.5° 11.2Hz 3.486x10°G - rad
2°/1° — 2.46 63.6° 11.3Hz 1.633x10°G - rad
1°/1° — 2.52 64.4° 11.1Hz 8.060x10“G - rad
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Fig.1 Coordinated System Definitions.
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Fig.2 Linear Perturbed Model of the missile.
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Fig.3 Digital Autopilot with Nonlinear
Feedback Decoupling Block.
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Fig.4 Linearized Control Configuration for
Analyses and Designs.
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Fig.5 Open-loop Bode Diagrams of Rolling
Channel for (a”, p7)=(12°,1°) .
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Fig.6 Frequency Responses of p/Ayc

for(a*,

B )=(12°,1°).
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Fig.7 5-DOF Simulations of the system
without Decoupling Loop.
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Fig.8 5-DOF Simulations of the system
with Decoupling Loop.
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Fig.9 5-DOF Simulations of the system
with Decoupling Loop.
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