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 Decoupling of Multivariable Systems and Application to 
Flight Control System 
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Abstract 

In this literature, an effective decoupling method is proposed for analyses and designs of multivariable 
systems. It is applied to a serious aerodynamic coupled missile flight control system. No matrix inversion of the 
system dynamic for decoupling control is required. From frequency and time responses of the illustrating 
multivariable example, it will be seen that the decoupling and robustness for aerodynamic couplings can be 
obtained simultaneously. The decoupling effects are kept almost unchanged for large system parameter variations 
and uncertainties. 
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I. Introduction 
The flight control systems are widely used real 

multivariable feedback control systems. They are large 
parameter variation systems for large flight envelope and 
serous cross-coupling systems for aerodynamic 
couplings. For skid-to-turn(STT) missile flight control 
systems, aerodynamic couplings from pitching/ yawing 
channels to rolling channel are destabilizing and degrade 
performance of the system [1,2]. Higher gain crossover 
frequency ratios of the rolling channel to pitching/ 
yawing channels are usually expected. They are usually 
used in conventional design techniques [3,4], and are 
diagonal dominant designs for multivariable feedback 
systems [5,6]. However, it is constrained by hardware 
dynamics and system requirements for target engaging. 
Other possible methods are to use cross-decoupling 
controllers [7-9] and output feedback- decoupling 
controllers [10,11]. In general, inverting the transfer 
function matrix of multivariable plant suffers from it 
may have large modeled, un-modeled uncertainties, 
non-minimum phase zeros and large faster variations 
of cross-coupling dynamics. 

 
Dynamic Inversion(DI) is another possible 

methodology for designing multivariable control laws 
[12-18]. A DI controller consists of two parts. In inner 
loop, nonlinear input-output behavior of the plant is 
canceled by feedback control laws, consisting of inverse 
nonlinear model equations. The closed-loop system is 
reduced to a set of integrators. In outer loop, a linear 
controller is used to impose desired command response 
behavior. Unfortunately, dynamic inversion control laws 
may show very poor robustness to uncertainties in the 
designing model. This problem is usually coped with by 
introducing robustness design techniques: ∞H / μ  

synthesis [16], Quantitative Feedback Theory (QFT) [16, 
17], Structured Singular Value Synthesis (SSV) [18], etc. 
to find robust controllers for recovering the required 
robustness under model uncertainties. 
 

In this literature, a nonlinear decoupling method is 
proposed for multivariable feedback control systems. 
Decoupling is derived from multiplications of 
measurable output feedback datum and controllable 
outputs of conventional diagonal controllers. No matrix 
inversion for plant dynamic is need in analysis and 
designs. The decoupling behaviors are nonlinear, and 
will be linearized by small perturbation theorem. It is 
similar to find the linearized model of the plant. Exact 

decoupling and diagonal dominant conditions are 
formulated. 

 
The proposed method is applied to a supersonic- 

missile flight control system. It is a 33 ×  multivariable 
feedback control system with lager parameter variations. 
Multiplications of two measurable accelerations with 
three controllable outputs of conventional well-proven 
autopilot are used to cope with aerodynamic couplings. 
They offer exact sign and magnitude proportional to 
aerodynamic coupling. Over or wrong cancellation can 
be prevented. It needs not to concern the internal 
stability [7-9]. The magnitudes of decoupling terms will 
be found by eliminating major coupling elements of the 
state transition matrix of a simplified coupled system 
only. The validation of simplification is verified by the 
completed system including hardware dynamics and 
compensations. From frequency responses of uncoupled, 
coupled and decoupled systems, it will be seen that the 
decoupling and robustness coped with aerodynamic 
couplings can be obtained simultaneously. All analyzed 
results will be verified by 5-DOF digital simulations 
under large parameter variations and uncertainties. 

 
II. The Proposed Decoupling Method 

Considering a general mm ×  multivariable 
system described below: 
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If diagonal controllers )(),..,(),( 21 spspsp m
 were used, 

then inputs of multivariable system are 
 

( ))1()1(21)1( )](),..,(),([ ××× −= mmmm YRspspspdiagU        (2) 

 
where )1( ×mR  are input commands. Eq. (2) represents 

conventional designs without cross-coupling 
controllers. For illustrating the proposed decoupling 
method, 33 ×  multivariable systems will be 
discussed and applied to a 33 ×  flight control system. 
The three inputs (

321 ,, UUU ) given in Eq. (2) are 
replaced by (

321 ,, UUU ′′′ ) and given below: 
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The added terms to original (

321 ,, UUU ) are 
decoupling terms. For instance, 3223 YUK  and 
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2332 YUK  are decoupling control for coping with 

coupling from channels 2 and 3 to channel 1. The 
command 1U ′  includes feed-forward ( 32 ,UU ) and 
feedback ( 32 ,YY ) decoupling behaviors. 

jiijK ≠,
 are 

parameters to be found. Eq. (3) gives that ( ),, 321 YYY  

are three measurable output feedback datum and 
(

321 ,, UUU ′′′ ) are three controllable datum. Certainly, 
one can use 11YU , 22YU , and 33YU  in Eq. (3) for 

decoupling. But, it will be seen that Eq. (3) is the 
good decoupling formulation for flight control 
systems. 
 

The nth-order small signal perturbation model 
from a specified set of trim conditions 

)13( ×′U  and 
)13( ×Y  

of Eq. (1) for 33 ×  multivariable systems are  
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for )3,2,1;( =′+′=′ iuUU iii

 and )3,2,1;( =+= iyYY iii . The 

small perturbed models of Eq. (3) derived from trim 
conditions (

321 ,, UUU ), (
321 ,, UUU ′′′ ) and ( ),, 321 YYY  are  
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for )3,2,1;( =+= iuUU iii . For simplicity, constant 
diagonal gains { }321 ,, pppdiag  are used. Input 
commands [ ]TRRR 321 ,, are set to be zeros for general 

use. Then, Eq. (5) can be rewritten as 
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Replacing [ ]Tuuu 321 ,, ′′′  of Eq. (4) by Eq. (6), one has 
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The term 1
)33()33()33()3( )( −

×××× − FDIFB n  in Eq. (7) is 

the decoupling matrix. It includes designing 
parameters jiijK ≠, . For strict proper system, 

decoupling matrix becomes )33()3( ×× FB n . If state 

variables are decomposed into three sets; i.e., 
[ ]T

nx XXXX 321)1( ||= , and those are relate to three channels 

respectively, then Matrix nnA ×

~  can be decomposed 

into nine sub-matrices; i.e., 
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where jiijA ≠,

~  are coupling matrices between 

channels. Exact decoupling can be obtained by nulling 
elements of coupling matrices. Eq. (3) gives there are 
only six parameters can be used. Thus, exact decoupling 
is impossible for system order 3>n . The number of 
parameters jiijK ≠,  is mm −2  for mm ×  multivariable 

systems and maximal total number of jiijA ≠,

~  is nn −2 . 

In general, the value of nn −2  is greater than that 
of mm −2 . It will be seen that eliminating/ reducing the 
major coupling elements in jiijA ≠,

~  to get diagonal 

dominant is rather than exact decoupling. Diagonal 
dominant can be obtained by minimizing off-diagonal 
norm/ diagonal norm ratios: 
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Minimal-order model of the system will be used in 
the following section to find 

jiijK ≠,
 first, and then 

hardware dynamic and compensations included for 
confirming effectives of decoupling characteristics 
of the complete system. Since PI controller can be 
used to decouple in low frequency band, thus the 
major effort will be paid to consider characteristics 
in medium frequency band. The detailed analyzed 
procedures and effectives will be illustrated by a 

33 ×  supersonic-missile flight control system. The 
minimal system order n  to describe the flight 
control system is equal to 5. 
 
III. Application to Flight Control 

Systems 
The translational and rotational dynamics of the 

missile shown in Fig.1 are described by the following 
six nonlinear differential equations [19]: 

 
mFVRWQmCsqU xgx // ++−−=

•                                (10) 
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mFWPURmCsqV ygy // ++−−=
•                     (11) 

mFUQVPmCsqW zgz // ++−−=
•                      (12) 

xl IlsqCP /−=
•                                                    (13) 

yzxm IPRIIlsqCQ /)( −−=
•                              (14) 

yxyn IPQIIlsqCR /)( −−=
•                              (15) 

 
In above equations, U, V and W are velocity 

components measured on the missile body axes; P, Q 
and R are the components of the body angular rate: 

zgygxg FFF ,,  are the gravitational forces acting along the 
body axes: and zyx III ,,  are the moments of inertia. 
The variable s  is the reference area, q  is the dynamic 

pressure:  
 

2/2/)( 2222
MVWVUq ρρ ≡++=                                     (16) 

 
l  is the reference length. The aerodynamic lifting 
forces ( zyx CCC ,, ) and moments ( nml CCC ,, ) are 

function of Mach number, angle of attack ( *α ), angle 
of sideslip ( *β ); the angles of attack and sideslip are 

defined as 
 

)/(tan 1* UW−=α                                                              (17) 

and 
 

]cos/)/([sintan *11* αβ MVV−−=                                  (18) 

 
The small signal perturbation model from a specified 
set of trim conditions ),,,,,,( ***** βαYOZO AARQP  is 

described by following differential equations: 
 

rLqLpLLLpLp rqpp δδδβα δδδβα +++++=
•

            (19) 

pMqMMqMq pqq δδα δδα +++=
•

                    (20) 

)(tan * pZqZZMqp pqB δδαβα δδα ++++−=
•

        (21) 

pNrNNrNr prr δδβ δδβ +++=
•

                                  (22) 

)(tan * pYrYYMrp prB δδβαβ δδβ +++−=
•                 (23) 

)( qMpMMqMlpZqZZa qpqSpqzacc δδαδδα δδαδδα +++−++=                                                                              

(24) 
)( rNpNNrNlpYrYYa rprSpryacc δδβδδβ δδβδδβ ++++++=                                                                      

(25) 
 
where p, q, r are body angular rate deviations from 
trims ),,( *** RQP ; zacca , yacca  are body acceleration 

deviations from trims ),( YOZO AA ; and α and β are 

angles of attack and sideslip deviations from 
trims ),( ** βα , Sl  is the distance between sensor 
position and Central of Gravity (CG). )()()( ,, ••• NML , 

)(•Y  and )(•Z are derivatives of moments 
( nml CCC ,, )/ forces ( zy CC , ) with respect to p, q, 
r, βα , , rqp δδδ ,, . Fig. 2 shows connections given by 

Eqs. (19) to (25), in which gray blocks show coupling 
effects between rolling/ yawing/ pitching channels. 
For large angle of attack ( *α ) and small sideslip angle 
( *β ), the magnitude of terms *tan β  and αL  will 
much less than those of *tanα  and βL , thus the 

original 3×3 system can be decomposed into a 2×2 
roll-yaw coupled system and a pitching system. 
Similar to the case of large value of *β  and small 
value of *α , it can be decomposed into a 2×2 
roll-pitch coupled system and a yawing system. 
 

Now, consider the major coupling effects from 
yawing channel to rolling channel of a 2×2 roll-yaw 
coupled system. The transfer function of rp δ/  is 
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The denominator of Eq. (26) can be approximated by  
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Since the value of rN  is negative for stable static 
margin(SM) of the missile, the positive value of βα L*  

is called the unstable aerodynamic coupling for it will 
destabilize or degrade performance of the system; 
while negative value of βα L*  is called the stable 
aerodynamic coupling. Note that the magnitude of βL  

given in the numerator of Eq. (26) is much greater than 
that of rLδ . Such that βL  and βα L*  are two major 

coupling terms. They affect not only the magnitude but 
also the stability of the system. 
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Considering another simplified 2×2 roll-pitch coupled 
system, the transfer function of qp δ/  is in the form of 
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Similar to discussions for the 2×2 roll-yaw coupled 
system, one can find the approximated denominator of 
Eq. (28) is  
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Eq. (29) gives the positive value of αβ L*  is called the 

stable aerodynamic coupling; and negative value of 
αβ L*  is called the unstable aerodynamic coupling. 

αβ L*  and αL  are two major coupling terms from 

pitching channel to rolling channel. Eqs. (26) and (28) 
give that the characteristic of the considered system is 
largely affected by αβ L*  and βα L* . These imply that 
uses of 32YU  and 23YU  in Eq. (3) are rather than 
those of 22YU , and 33YU  for decoupling flight 

control systems. 
 

There are five measurable datum 
(

fffZFYF RQPAA ,,,, ) and three controllable output 
commands (

rqp ΔΔΔ ,, ) of autopilot can be used for 

decoupling. Fig.3 excluding decoupling blocks is the 
well-proven control configuration of conventional 
missile autopilot [3, 4]. Consider the nonlinear 
decoupling configuration shown in Fig.3. The 
mathematical representation of the decoupling block is 

 
qYFrZFpp AKAK Δ×+Δ×+Δ=Δ 2332

'                     (30) 

pYFqq AK Δ×+Δ=Δ 13
'                                       (31) 

pZFrr AK Δ×+Δ=Δ 12
'                                   (32) 

 
where 

)(•Δ  terms are output commands of autopilot 
without decoupling, 

)(' •Δ  terms are output commands 

with decoupling, and 32K , 23K , 13K  and 12K  are gains of 

decoupling loop to be found and applied. Since the 
maneuvers of pitching and yawing channels are 
orthogonal. There is almost no coupling between 

pitching and yawing channels. Thus, Eqs. (31) and (32) 
neglect rZFA Δ×  and 

qYFA Δ× . 

 
The small signal perturbed equations of Eqs. (30) 

to (32) on trim conditions ( roqoAA YOZO δδ ,,, ) are  

 
)()(' 2332 qoaqAKroarAKpp yaccYOzaccZO δδδδδδ ++++=         (33) 

pAKqq YOδδδ 13' +=                                              (34) 

pAKrr ZOδδδ 12' +=                                              (35) 

 
with

;;;; yaccYOYFrqp aAArroqqoppo +=+=Δ+=Δ+=Δ δδδδδδ , 

zaccZOZF aAA += and 0≡poδ  for skid to turn missile. 

Signal flows with Eqs.(33) to (35) are given in 
Fig.4. Note that ( rqp δδδ ,, ) will replace 
( rcqcpc δδδ ,, ) in following analyses, those are 

outputs of de-mixer of four actuators cascaded to 
( c1δ , ccc 432 ,, δδδ ) shown in Fig.3. Fig.4 shows the 

linearized control configuration for analyses and 
designs. Eq. (33) includes rAZOδ  and qAYOδ . It implies 
that proper values of 32K  and 23K  may decouple the 
coupling terms βα L*  and αβ L* . The uses of Eqs. (34) 
and (35) with proper values of 13K  and 12K  are used to 

decouple the kinematical coupling. For simplicity, 
hardware dynamics and compensations are first neglected 
to derive close-form solutions of 32K , 23K , 13K  and 12K . 

 
Since gain crossover frequencies of inner loops in 

conventional designs are usually greater than those of 
outer loops, outer loops shown in Fig.4 can be 
neglected for decoupling analyses and designs. This 
simplification will be verified by frequency and time 
responses of the complete system. The inputs of the 
plant of inner loops closed system can be written as 
below: 
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pAKrKr ZOir δδ 12' +=                                              (38) 

 
Substituting terms ),( yacczacc aa  of Eq. (36) with Eqs. (24) 

and (25), one has 
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where ipKe −=11 ; 

qS MrolKe δ3212 −= ; )(3213 ααδ MlZroKe S−+= ;

rS NqolKe δ2314 +=  
)(2315 ββδ NlYqoKe S++= ; iqKe =22 ;

irKe =34
 

pp qoYKroZKf δδ δδ 233211 += ; 
YOqSq AKMlZroKf 233212 )( +−= δδδ ; 

)(233213 rSrZO NlYqoKAKf δδδ ++= ; YOAKf 1321 = ; 
ZOAKf 1231 =  

 
The simplified system will be closed after )',','( rqp δδδ are 
replace by ),,( rqp δδδ . It implies 
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where  
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Substituting Eq. (40) into Eqs. (19) to (23), one has 
 
 

   
 
(42) 

 

 
 
 
Eq. (42) is the state transition matrix of the closed-loop 
system. Considering following five elements of above 
state-transition matrix for decoupling: 
 

FZOrYOqpipp ALKALKLKLa Δ++−= /][ 121311 δδδ
               (43) 

FZOrYOqpS ALKALKLMlZroKLa Δ++−+= /])[( 12133213 δδδααα δ   

(44) 
FZOrYOqpS ALKALKLNlYqoKLa Δ++++= /])[( 12132315 δδδβββ δ    

(45) 
FYOqpip AMKMKa Δ+−= /][ 1321 δδ

                                    (46) 

FZOrpip ANKNKa Δ+−= /][ 1231 δδ
                         (47) 

 
where 13a  is the state transition from α  to p&  and 15a  

is the state transition from β  to p& . Conventional design 

concepts are to minimize ratios of |/| 1113 aa  and 
|/| 1115 aa  for diagonal dominant. It implies that larger 

value of ipK and large gain crossover frequency of inner 

loop will be. Eqs. (44) and (45) represent that one can set 

13a  and 15a  to be zeros (or approaching to zeros) with 
proper values of 32K , 23K , 13K  and 12K . It minimizes 
ratios of |/| 1113 aa  and |/| 1115 aa  while leaving ipK  be 

alone. After 13a  and 15a  are set to be zeros, 
aerodynamic couplings ( αL  and βL ) form pitching/ 

yawing channels to rolling channel can be eliminated. In 
another way, let 21a  and 31a  to be zeros, then 

kinematical coupling from p  to q& / or to r&  will be 

eliminated also. Then, the cycling of coupling between 
rolling and pitching/ yawing channels are disconnected. 
Note that the eliminations are not exact for the real system. 
However, small ratios of |/| 1113 aa  and |/| 1115 aa  are 

usually obtained for diagonal dominant. It is due to the Eq. 
(42) is derived on some simplifications and assumptions, 
and due to modeling uncertainties for aerodynamics are 
always exist. 
 

The four decoupling loop gains 32K , 23K , 13K  and 

12K  are found by setting four elements 13a , 15a , 21a  

and 31a  to be zeros. They are in the form of 
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YOq

p
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M

K
δ
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                                                   (50) 

ZOr

p

AN
N

K
δ

δ=12
                                                    (51) 

 
where FΔ  is given in Eq. (41). Eqs. (48) to (51) 
give 32K , 23K , 13K  and 12K  are independent on inner 
loop gains ipK , iqK  and irK . They are functions of trim 
conditions ( roqoAA YOZO δδ ,,, ). By experience, the 

modeling uncertainties for aerodynamic 
coefficients are magnitudes of them rather than 
wrong signs of them. Wrong decoupling gains in 
sign can be avoided. This is the major advantage 
of the proposed method rather than dynamic 
inversions for matrix inversion of an 
incompletely known design model may introduce 
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wrong way cancellation. Another advantage is 
magnitudes of decoupling are adjusted 
automatically on those of ( ZFA , YFA ). It will be seen 

that gains found for large aerodynamic coupling 
condition can be used for small aerodynamic coupling 
conditions. 
 
IV. A Supersonic Missile Example 

The small perturbed aerodynamic coefficients of the 
considered system are given in Appendix A [20, 21] 
for seven combinations of angle of attacks ( *α ) 
and sideslip ( *β ). It gives that performance and 

robustness of the considered system will be 
affected by βL  for maximal value of coupling 
coefficient βL  is about two third of pLδ . In general, 

three SISO systems are designed first individually; 
i.e., 
 

p

p

Ls
L

p
p

−
= δ

δ
                                                                (52) 

 
for rolling channel; 
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for pitching channel; 
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for yawing channel and then connected them with 
aerodynamic / kinematical coupling terms ; i.e., 
MIMO system, for verification the suitability of 
SISO designs. Several iterations are usually 
needed. Table 1 gives SISO designed and MIMO 
analyzed results. The gains ( opK , ipK , oqK , iqW , iqK , 

orK , irW , irK  ) are give in Appendix A. There are 
gain adjusting logics for rolling channel gains ipK  
and opK : 

 
ipoipZO KSckipKASckip ×=+= ;4.1||025.0 ; 

opoopZO KSckopKASckop ×=+= ;4.1||050.0 ; 

 

The use of Sckip  and Sckop  is to increase 

low frequency gain for coping with aerodynamic 
couplings. They are functions of ZOA . The use of 
Sckip  will increase the gain crossover frequency 
for large value of ZOA . The use of Sckop  will 

increase Low Frequency Gain Margins(LFGMs) 
while losing Phase Margin(PM) and keeping gain 
crossover frequency(WCR) almost be unchanged. 
 

The compensators and hardware dynamics are 
given in Appendix B on s-domain. Digital 
compensators are derived from bilinear 
transformation: )1(/)1(2 +−= zTzs s . From Table 1, 

one can see that it is a good design for good 
robustness found for SISO System; but LFGMs are 
reduced incrementally for larger coupling term 
added; i.e., MIMO system. The effects of coupling 
terms for ( *α , *β ) = (12°, 1°) are shown in Fig.5. 

Fig.5 shows open-loop frequency responses of the 
rolling channel. The broken point is at the position 
between pcδ  and actuator. The solid- lines are 

frequency responses of the rolling SISO system, 
and the doted-lines are those of 3×3 MIMO system 
while being broken the rolling inner loop only. 
Fig.5 shows that loop gain in low-medium 
frequencies is largely reduced by introducing 
coupling terms. Eqs. (26) and (28) give same 
conclusion. The corresponding LFGMs, High 
frequency Gain Margins (HFGMs ) and PMs are all 
given in Table 1. It gives that LFGMs are 
unacceptable for *α > 6°. Furthermore, the system is 
nearly unstable for *α ≧12 °. Table 1 gives decoupling 
for better LFGMs is expected. 

 
Table 2 gives the analyzed results with decoupling 

added. 32K , 23K , 13K  and 12K  are found by Eqs. (48) to 
(51). It gives LFGMs become acceptable (LFGM ≦ 
0.53), while keeping PMs and HFGMs almost be 
unchanged. The effective of decoupling is shown in Fig.5 
(dashed-line) also. It recovers the magnitude from 
coupled system (doted-line) to increase LFGMs. Note 
that the effective for decoupling of two-axis maneuvering 
( *α , *β )=(10°, 8°) are given in Tables 1 and 2 also. Note 
also that 32K , 23K , 13K  and 12K  are found from 

simplified system without compensations and hardware 
dynamics. The effects of compensations and hardware 
dynamics must be analyzed.  
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Fig.6 shows the variation analyses for four 
combination conditions with/ without decoupling and 
with/without compensations and hardware dynamics. 
The doted-line shows the responses without decoupling/ 
without compensations and hardware dynamics. The 
dash-doted-line shows responses with 
decoupling/without compensations and hardware 
dynamics. The solid-line shows responses without 
decoupling/ with compensations and hardware dynamics. 
The dashed-line shows responses with decoupling/with 
compensations and hardware dynamics. Fig.6 shows that 
the decoupling characteristics are almost not affected by 
adding hardware dynamics and compensations. 
Hardware dynamics and compensations can be viewed as 
un-modeled dynamics. It implies that the proposed 
decoupling is robust for coping with un-modeled 
dynamics. 

 
Table 3 gives the analyzed results with constant 

decoupling gains found for ( *α , *β ) = (12°, 1°). Other 

six trim conditions use same gains. It gives compatible 
results given in Table 2. For instance, HFGM and PM of 
the trim condition ( *α , *β ) = (1°, 1°) corresponding to 
( ZFA , YFA ) = (-1.42G,-1.42G) keep almost unchanged. Eq. 

(30) gives same conclusion for amplitudes of decoupling 
are adjusted by ( ZFA , YFA ) automatically. The decoupling 
described by qoAKroAK YOZO δδ 2332 +  for each trim 

condition is given in Table 3. Over decoupling is avoided. 
The gain crossover frequency (WCR) of the rolling 
channel of each trim condition is given in Table 3 also. 
They are almost constant. The analyzed results gives in 
Table 3 show that decoupling are robust under large plant 
variations; i.e.; angle of attack ( *α ) varied from 12° to. 1°. 
Appendix A gives variations of aerodynamic coefficients 
for seven trim conditions. Thus, constant gains 

32K , 23K , 13K  and 12K  derived from serious 

aerodynamic coupling conditions can be used for all other 
trim conditions. All analyzed results are verified by 
5-DOF simulations in following paragraphs. 

 
Fig.7 shows the 5-DOF simulating results for 

( YCZC AA , ) = (-22.3G, -1.42G) in absence of decoupling 

loops. The control configuration shown by Fig.3 
excluding the proposed decoupling block is used in 
5-DOF simulation. Output limitations for ( cδpc,δqc,δr ) 

are (±5°,±20°,±20°). This operating condition is 
corresponding to trim condition ( *α , *β ) = (12°, 1°). 

Fig.7 shows the compensated system is nearly unstable 
for sustaining oscillating of FZF PA , , β  andRF . The 

oscillating frequency is 2.75Hz. Fig.6 gives same 
conclusion in frequency domain. 

 
Fig.8 shows simulating results with decoupling 

described by Eqs. (30) to (32). It can be seen that the 
performance and stability of the system are improved 
significantly. The maximal value of rolling angular rate is 
equal to -15.6 deg/s. Note that constant decoupling gains 
given in Table 2 for ( *α , *β ) = (12°, 1°) are used in 

whole simulation. ± 5G varying testing for command 
ZCA  are applied after 2 seconds. It is corresponding to 

angle of attack ( *α ) varying from 10° to 14°. These 
testing give decoupled behavior keeps almost unchanged 
for plant variations (emulating system uncertainties). 
Fig.9 shows simulation results for ( *α , *β ) = (1°, 1°) 
with decoupling gains found for ( *α , *β ) = (12°, 1°). It 

can be seen that over decoupling is avoided for small 
values of ( YFZF AA , ) are used in decoupling loops. 
 
V. Conclusions 

In this literature, a nonlinear decoupling technique 
has been proposed to analyses and designs of 
multivariable feedback control systems. It was applied 
to a real 33×  supersonic missile flight control system. 
No dynamic inversion is needed in analyses and designs. 
The close-form solutions of decoupling gains were found 
easily by a simplified system and verified by the 
complete system including hardware dynamics and 
compensations. The decoupling effects were kept 
almost unchanged for large system parameter variations 
and uncertainties. From 5-DOF simulation results, one 
can see that the proposed method gave a possible way to 
cope with aerodynamic coupling for high performance 
missile. 
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Appendix A: Aerodynamic 

Coefficients and 
Loop Gains 

Seven sets of aerodynamic coefficients and trim 
values (

YOZO AA , , roqo δδ , ) of an air-to-air missile 

[20, 21] at VM=676.8m/s are given below: 
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 qLδ

 =730.45 
pLδ
=14609.0 

rLδ
 =730.45 

pL = -4.798 
qM =-3.232 

 rN  =-3.232 βN =219.22 rN δ =-599.7 pNδ =-29.99 qZδ =-30.61 

 βY  =-95.85 qM δ =-599.7 pM δ =-29.99 rYδ =30.611 pYδ = 0.000 

 opoK =15.58 ipoK =0.0031 oqK =0.0744 iqW =15.98 iqK =0.0409 

 Sl  =0.035 BM =0.0145 orK =0.0744 irW =15.98 irK =0.0409 

 
A1. *α  =12.00° *β =1.00° αL =684.45 βL = 8951.6 αZ =-176.65 

 αM =-591.6 roδ =0.46° qoδ =-11.33° YOA =-1.42G ZOA =-22.3G 

      
A2. *α  =10.00° *β =1.00° αL =809.8 βL =7324.1 αZ =-171.4 

 αM =-571.3 roδ =0.46° qoδ =-8.86° YOA =-1.42G ZOA =-17.53 

      
A3. *α  =8.00° *β =1.00° αL =623.76 βL = 5787.7 αZ =-161.45 

 αM =-508.7 *
rδ =0.46° qoδ =-6.17° YOA =-1.42G ZOA =-13.1G 

      
A4. *α  =6.00° *β  =1.00° αL =518.8 βL = 4446.8 αZ =-136.9 

 αM =-392.8 roδ =0.46° qoδ =-3.83° YOA =-1.42G ZOA =-9.11G 

      
A5. *α =4.00° *β =1.00° αL =606.29 βL = 2835.8 αZ =-109.16 

 αM =-252.4 roδ =0.46° qoδ =-2.12° 
YOA = -1.42G ZOA =-5.77G 

      
A6. *α  =2.00° *β =1.00° αL =1510.1 βL =-528.8 αZ =-97.29 

 αM =-228.8 roδ =0.46° qoδ =-2.13° YOA =-1.42G ZOA =-2.88G 

      
A7. *α  =1.00° *β  =1.00° αL =2789.6 βL = -2790 αZ =-95.85 

 αM =-219.2 roδ =0.46° qoδ =-0.46° 
YOA = -1.42G ZOA =-1.42G 

 
 
 
 
Appendix B: Compensators and 

Hardware Dynamic 
Models 

 
1. Rolling outer/inner loop compensators 

14.4/
179.8/)(

+
+

=
s
sKsPOC op

, 
11413/
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+
+

=
s
sKsPIC ip

 

 

2. Yawing/Pitching outer/inner loop compensators 
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+
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1942/
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+
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3. Actuator models 

1666275.9.142
166627)( 2 ++

=
ss

sCAS  

 

4. Rate gyro/accelerometer models 

1934449.263
193444)( 2 ++

=
ss

sRG  

 
5. Inner loop low-pass filter body angular rate 

6.439
6.439)(

+
=

s
sLPFI  
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6. Outer loop low-pass filter for acceleration 
2.251

2.251)(
+

=
s

sLPFO  

 
 

 
Table 1 SISO System and MIMO System without Decoupling 

Trims SISO System MIMO without Decoupling 
*α / *β  HFGM PM LFGM HFGM PM 

12°/1° 1.84 55.4° 0.99 1.89 0.9° 
10°/1° 1.96 57.5° 0.79 1.99 59.2° 
8°/1° 2.09 59.4° 0.60 2.11 60.6° 
6°/1° 2.22 61.2° 0.42 2.23 62.0° 
4°/1° 2.34 62.7° 0.25 2.34 63.1° 
2°/1° 2.46 64.0° — 2.45 64.1° 
1°/1° 2.52 64.7° — 2.51 64.7° 
10°/8° 1.96 57.5° 0.17 1.96 58.0° 

 
 
 

Table 2 MIMO System with Decoupling Loops and Found Gains. 
Tri
ms 

Robustness Decoupling Gains 

*α /
*β  

LFGM HFGM PM 32K  
23K  

13K  
12K  

12°/1 0.54 1.95 38.4° 0.0366 -0.0341 0.0351 0.0022 
10°/1 0.46 2.05 45.3° 0.0447 -0.0357 0.0351 0.0029 
8°/1° 0.39 2.15 51.9° 0.0369 -0.0411 0.0351 0.0038 
6°/1° 0.32 2.25 56.7° 0.0360 -0.0514 0.0351 0.0055 
4°/1° 0.21 2.36 60.8° 0.0523 -0.0590 0.0351 0.0087 
2°/1° — 2.49 64.4° 0.1431 0.0245 0.0351 0.0176 
1°/1° — 2.57 65.7° 0.2630 0.2630 0.0351 0.0351 
10°/8 0.13 1.98 57.5° 0.0303 -0.0176 0.0039 0.0029 

 
 

 
Table 3 MIMO System with Constant Decoupling Gains. 

Trims Robustness Decoupling 
*α / *β  LFGM HFGM PM

Gain- 
Crossover qoAKroAK YOZO δδ 2332 +

12°/1° 0.54 1.95 38.4° 10.5Hz radG ⋅× −210613.1  
10°/1° 0.47 2.05 46.2° 10.8Hz radG ⋅× −210264.1  
8°/1° 0.40 2.15 53.1° 11.0Hz radG ⋅× −310063.9  
6°/1° 0.33 2.26 58.2° 11.1Hz radG ⋅× −310913.5  
4°/1° 0.22 2.36 61.5° 11.2Hz radG ⋅× −310486.3  
2°/1° — 2.46 63.6° 11.3Hz radG ⋅× −310633.1  
1°/1° — 2.52 64.4° 11.1Hz radG ⋅× −410060.8  
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Fig.1 Coordinated System Definitions. 

 
 
 
 
 

 
                Fig.2 Linear Perturbed Model of the missile. 

 
 
 
 
 
 

 
Fig.3 Digital Autopilot with Nonlinear 

 Feedback Decoupling Block. 
 
 
 

 
 

 
Fig.4 Linearized Control Configuration for  

Analyses and Designs. 
 
 
 
 
 
 

 
Fig.5 Open-loop Bode Diagrams of Rolling  

Channel for ( *α , *β )=(12°,1°) . 

 
 
 

 
          Fig.6 Frequency Responses of p/Ayc 

for( *α , *β )=(12°,1°). 

 
 



國立虎尾科技大學學報  第二十五卷第四期 （民國九十五年十二月）：43-5
6 

 55

 
Fig.7 5-DOF Simulations of the system  

without Decoupling Loop. 
 
 
 
 

 
Fig.8 5-DOF Simulations of the system 

 with Decoupling Loop. 
 
 
 
 

 
Fig.9 5-DOF Simulations of the system 

 with Decoupling Loop. 
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多變數系統解藕與飛行控制系統應用 

蔡添壽 

國立虎尾科技大學飛機工程學系  助理教授 

 

摘   要 

本文針對多變數系統提出一個非線性解耦連的分析與設計方法，此法被運用在一個氣動力耦連非

常嚴重的超音速飛彈上。此法不需要系統動態特性的反矩陣進行解耦。從滾轉頻道的頻率響應及時間

響應，可以得知解耦與穩健度可以同時達成，此法在大飛行包線之大參數變化下與模式不確定下仍能

適用。 

 

關鍵詞:多變數系統解藕連、飛行控制系統 

 

 

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


